ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
D. Pun-Quach, P. Sermer, F. M. Hoppe, O. Nainer, B. Phan
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 170-183
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Reactor Safety | doi.org/10.13182/NT13-A15765
Articles are hosted by Taylor and Francis Online.
This paper presents a best estimate plus uncertainty (BEPU) methodology applied to dryout, or critical channel power (CCP), modeling based on a Monte Carlo approach. This method involves the identification of the sources of uncertainty and the development of error models for the characterization and separation of epistemic and aleatory uncertainties associated with the CCP parameter. Furthermore, the proposed method facilitates the use of actual operational data leading to improvements over traditional methods, such as sensitivity analysis, which assume parametric models that may not accurately capture the possible complex statistical structures in the system input and responses.