ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
July 2023
Fusion Science and Technology
Latest News
Destruction of Ukrainian dam threatens Zaporizhzhia
A Soviet-era dam downstream from the Zaporizhzhia nuclear power plant in southeastern Ukraine collapsed last evening, causing the water level of the Kakhovka Reservoir north of the dam to drop and raising new concerns over the already jeopardized safety of the Russian-occupied nuclear facility, Europe’s largest. The reservoir supplies water for, among other things, Zaporizhzhia’s cooling systems.
Isao Kataoka, Kenji Yoshida, Masanori Naitoh, Hidetoshi Okada, Tadashi Morii
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 81-93
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15758
Articles are hosted by Taylor and Francis Online.
Rigorous and consistent formulations of basic equations of interfacial area transport were derived using correlation functions of the characteristic function of each phase and velocities of each phase. The turbulent transport term of interfacial area concentration was consistently derived and related to the difference between the interfacial velocity and the averaged velocity of each phase. Constitutive equations of turbulent transport terms of interfacial area concentration were proposed for bubbly flow. New transport model and constitutive equations were developed for churn flow. These models and constitutive equations are validated by experimental data of radial distributions of the interfacial area concentration in bubbly flow and churn flow.