ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Haihua Zhao, Per F. Peterson
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 422-436
Technical Paper | Special Issue on the Initial Release of MCNP6 / Thermal Hydraulics | doi.org/10.13182/NT12-A15353
Articles are hosted by Taylor and Francis Online.
Generation IV high-temperature-reactor (HTR) systems use closed gas Brayton cycles to realize high thermal efficiency in the range of from 40% to 50% or more. The waste heat is removed through coolers by water at a substantially greater average temperature than in conventional condensing Rankine steam cycles. This paper introduces an innovative advanced multieffect distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system, one can fully utilize the waste heat from closed gas Brayton cycles to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. AMED combined with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV HTRs.