ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Peiwei Sun, Jin Jiang
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 399-421
Technical Paper | Special Issue on the Initial Release of MCNP6 / Thermal Hydraulics | doi.org/10.13182/NT12-A15352
Articles are hosted by Taylor and Francis Online.
In this paper, a dynamic model of the Canadian supercritical water-cooled reactor (SCWR) is developed to examine its dynamics for potential control system design and analysis. The model development is based on fundamental mass, energy, and momentum conservation equations of major components within the Canadian SCWR operating at supercritical condition. A full set of nonlinear dynamic equations is first derived, from which linearized models are obtained. The linearized models are validated against the full-order nonlinear models in both time domain and frequency domain. The open-loop dynamic characteristics of the Canadian SCWR are investigated through extensive simulations. Steady-state and dynamic couplings among different inputs and outputs are examined using relative gain array and Nyquist plots, and adequate input-output pairings are identified. Cross-coupling at different operating conditions is also evaluated to illustrate the nonlinear behaviors of the system. The developed dynamic model provides a necessary platform for systematic investigation in the control system design and analysis of the Canadian SCWR.