ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
General Atomics’ SiGA-cladded test rods complete irradiation testing in the ATR
General Atomics Electromagnetic Systems (GA-EMS) announced last week that unfueled test rods featuring the company’s SiGA fuel cladding—made of a silicon carbide composite material—successfully survived 120 days of irradiation in the Advanced Test Reactor (ATR) at Idaho National Laboratory.
Zeyun Wu, Qiong Zhang, Hany Abdel-Khalik
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 372-382
Technical Paper | Special Issue on the Initial Release of MCNP6 / Fission Reactors | doi.org/10.13182/NT12-A15350
Articles are hosted by Taylor and Francis Online.
A new variant of a hybrid Monte Carlo-deterministic approach for simulating particle transport problems is presented and compared to the SCALE FW-CADIS approach. The new approach, denoted as the SUBSPACE approach, improves the selection of the importance maps in order to reduce the computational overhead required to achieve global variance reduction - that is, the uniform reduction of variance everywhere in the phase-space. The intended applications are reactor analysis problems where detailed responses for all fuel assemblies are required everywhere in the reactor core. Like FW-CADIS, the SUBSPACE approach utilizes importance maps obtained from deterministic adjoint models to derive automatic weight-window biasing. Unlike FW-CADIS, the SUBSPACE approach does not employ flux-based weighting of the adjoint source term. Instead, it utilizes pseudoresponses generated with random weights to help identify the correlations between the importance maps that could be used to reduce the computational time required for global variance reduction. Numerical experiments, serving as proof of principle, are presented to compare the SUBSPACE and FW-CADIS approaches in terms of the global reduction in standard deviation and the associated figures of merit for representative nuclear reactor assembly and core models.