ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
C. Roecker, N. S. Bowden, G. Carosi, M. Heffner, I. Jovanovic
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 231-240
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT12-A14636
Articles are hosted by Taylor and Francis Online.
Directional detection of fast neutrons emitted by special nuclear materials can be performed with a time projection chamber. This device permits particle identification and full three-dimensional reconstruction of charged-particle tracks produced by interaction of fast neutrons in the chamber active volume. Single-recoil-proton reconstruction allows rapid pointing, while the reconstruction of two recoil protons produced by a single incident neutron event can enable a measurement with very high angular resolution. Kinematic reconstruction algorithms for both of these cases are presented and their performance assessed using data generated by a simple Monte Carlo simulation and experimental data where those exist. The simulation data are also used to estimate the relative efficiency of both neutron imaging modalities as a function of the volume and pressure of the time projection chamber.