ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Tracy E. Stover, Paul J. Turinsky
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 216-230
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT12-A14635
Articles are hosted by Taylor and Francis Online.
The safe and economical design of new, innovative nuclear reactors will require uncertainty reduction in basic nuclear data that are input to simulations used during reactor design. These data uncertainties propagate to uncertainties in design responses, which in turn require the reactor designer to incorporate additional safety margins into the design, often increasing the cost of the reactor. Therefore, basic nuclear data need to be improved, and this is accomplished through experimentation, which is often done using cold critical experiments. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment that will provide the experimental data needed for maximum uncertainty reduction in the design responses. However, the optimization of the experiment is coupled to the reactor design itself because with reduced uncertainty in the design responses the reactor design can be re-optimized. It is thus desired to find the experiment design that gives the most optimized reactor design. Solution of this nested optimization problem is made possible by the use of the simulated annealing algorithm. Cost values for experiment design specifications and reactor design specifications are estimated and used to compute a total savings by comparing the a posteriori reactor cost to the a priori cost accounting for the offsetting cost of the experiment. This was done for the Argonne National Laboratory-developed Advanced Burner Test Reactor design concept employing a modified Zero Power Physics Reactor as the experimental facility.