ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New report lays out path to U.S. nuclear energy dominance
The new report “How America Can Achieve Nuclear Energy Dominance,” from the Working Group on U.S. Nuclear Energy Dominance, outlines a plan of action for the Trump administration that includes deploying new nuclear reactors, developing domestic supply chains, promoting nuclear exports, reforming regulations, and developing the workforce.
Working group chair Todd Abrajano said, “We welcome the Trump administration’s bold moves to kick-start the U.S. nuclear energy sector, but we recognize that President Trump’s executive orders alone can’t achieve our goals.”
Tracy E. Stover, Paul J. Turinsky
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 216-230
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT12-A14635
Articles are hosted by Taylor and Francis Online.
The safe and economical design of new, innovative nuclear reactors will require uncertainty reduction in basic nuclear data that are input to simulations used during reactor design. These data uncertainties propagate to uncertainties in design responses, which in turn require the reactor designer to incorporate additional safety margins into the design, often increasing the cost of the reactor. Therefore, basic nuclear data need to be improved, and this is accomplished through experimentation, which is often done using cold critical experiments. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment that will provide the experimental data needed for maximum uncertainty reduction in the design responses. However, the optimization of the experiment is coupled to the reactor design itself because with reduced uncertainty in the design responses the reactor design can be re-optimized. It is thus desired to find the experiment design that gives the most optimized reactor design. Solution of this nested optimization problem is made possible by the use of the simulated annealing algorithm. Cost values for experiment design specifications and reactor design specifications are estimated and used to compute a total savings by comparing the a posteriori reactor cost to the a priori cost accounting for the offsetting cost of the experiment. This was done for the Argonne National Laboratory-developed Advanced Burner Test Reactor design concept employing a modified Zero Power Physics Reactor as the experimental facility.