ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Jacobus J. Hancke, John C. Barry, Gerrit T. Van Rooyen, Johan P. R. De Villiers
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 149-158
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A14630
Articles are hosted by Taylor and Francis Online.
Coater parameters such as deposition temperature, volume percent of methyltrichlorosilane, and total gas flow were varied to study the effect on the ratio of defective TRISO nuclear fuel particles. The burn-leach test and other leach tests were performed to determine the defect ratio on samples of particles representing these variations. In the narrow ranges that were used, none of these parameters showed any correlation with the burn-leach result. However, a reduction in the density of the directly underlying carbon layer showed a marked increase in the defect ratio of particles. No trend could be observed when the density of the carbon layer was varied in the range of 1.8 to 2 g/cm3 , specified for TRISO particles. But, when the density was reduced to 1.7 and 1.6 g/cm3 , it was seldom possible to produce a batch that did not leach uranium, in spite of having a good quality SiC layer. This indicates that the integrity of the SiC layer is influenced by the quality of the underlying carbon layer. Mechanical damage is proposed as a mechanism responsible for the defective particles that are detected with the leach methods. This mechanism could be the reason for the variations in the leach results. Calculations and some examples show that all defects are not detected with the leach methods, probably because of the limited duration of these tests.