Oil and natural gas companies use 241Am sources for well-logging applications (in the form of americium-beryllium neutron sources). Currently, the domestic supply of 241Am is depleted, and industry is now purchasing sources from Russia. The goal of the Americium Recovery Project (ARP) is to reprocess defense-waste plutonium to recover 241Am that would then be sold to oil and gas companies, providing a safe, secure domestic source for industrial applications. Because the primary radiological concern with an 241Am source is external photon exposure, the radiological workers involved in the ARP will perform operations in glove boxes featuring lead-lined gloves. Given the U.S. mandate for the reduction of lead in industrial settings and the costs associated with the disposal of leaded gloves as mixed waste, alternatives are being considered to the traditional lead-lined gloves used in glove boxes. Several composite materials were previously developed and analyzed for incident photons of energies below 400 keV using the Lambert-Beer law to calculate transmission fractions. This research extends the energy range to 10 MeV and uses a source term of interest to the ARP. Further, the Monte Carlo transport code MCNP5 is used to calculate source-normalized doses using two common response functions: H'(0.07) and H*(10). The results and calculations presented in this research are more detailed than previous calculations and present further rationale for the context-specific selection of a given material.