ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Thorcon project takes forward step in Indonesia
Thorcon International has received official approval from BAPETEN, Indonesia’s nuclear regulator, for a site evaluation plan and site evaluation management system plan for the country’s Kelasa location. According to Thorcon, it is the first-ever nuclear power plant–related licensing approval from the Indonesian government, and it marks the completion of the first step of the company’s nuclear power plant licensing campaign in the country.
Adam Davis, Donald J. Dudziak
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 139-148
Technical Note | Materials for Nuclear Systems | doi.org/10.13182/NT12-A14525
Articles are hosted by Taylor and Francis Online.
Oil and natural gas companies use 241Am sources for well-logging applications (in the form of americium-beryllium neutron sources). Currently, the domestic supply of 241Am is depleted, and industry is now purchasing sources from Russia. The goal of the Americium Recovery Project (ARP) is to reprocess defense-waste plutonium to recover 241Am that would then be sold to oil and gas companies, providing a safe, secure domestic source for industrial applications. Because the primary radiological concern with an 241Am source is external photon exposure, the radiological workers involved in the ARP will perform operations in glove boxes featuring lead-lined gloves. Given the U.S. mandate for the reduction of lead in industrial settings and the costs associated with the disposal of leaded gloves as mixed waste, alternatives are being considered to the traditional lead-lined gloves used in glove boxes. Several composite materials were previously developed and analyzed for incident photons of energies below 400 keV using the Lambert-Beer law to calculate transmission fractions. This research extends the energy range to 10 MeV and uses a source term of interest to the ARP. Further, the Monte Carlo transport code MCNP5 is used to calculate source-normalized doses using two common response functions: H'(0.07) and H*(10). The results and calculations presented in this research are more detailed than previous calculations and present further rationale for the context-specific selection of a given material.