ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Takashi Kodama, Masanao Nakano, Kunio Fujita, Shingo Matsuoka, Yasuo Ito, Chihiro Matsuura, Hirotsugu Shiraishi, Yousuke Katsumura
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 103-110
Technical Paper | Reprocessing | doi.org/10.13182/NT11-45
Articles are hosted by Taylor and Francis Online.
Simulated high-level liquid waste was irradiated by 60Co gamma radiation, and changes in the gas-phase concentrations of the products H2, O2, and NOx that accumulated in the absence of sweeping air were measured. The H2 concentration reached a steady-state value of much less than 4% in line with the value predicted from the previously derived mathematical expression. The simulated dissolver solution was also irradiated, and another steady-state H2 concentration of much less than 4% was obtained in accordance with the corresponding predicted value. These experimental results lend strong support for the applicability of a mathematical expression in predicting the H2 concentration in a tank in the case of a sweeping-air function loss.