ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Shunsuke Uchida, Masanori Naitoh, Hidetoshi Okada, Hiroaki Suzuki, Soji Koikari, Seiichi Koshizuka, Derek H. Lister
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 65-77
Technical Paper | Thermal Hydraulics | dx.doi.org/10.13182/NT12-A14519
Articles are hosted by Taylor and Francis Online.
A modified six-step evaluation procedure has been proposed to evaluate local wall thinning due to flow-accelerated corrosion (FAC). In step 1, the one-dimensional (1-D) distribution of flow turbulence and the temperature along pipes in cooling systems were analyzed with a 1-D system simulation code to obtain approximate mass transfer coefficients at structure surfaces, prior to using a three-dimensional (3-D) computational fluid dynamics (CFD) code for precise flow turbulence analysis of the major parts. In step 2, corrosive conditions were calculated with a N2H4-O2 reaction analysis code. In step 3, high FAC risk zones were determined for further evaluation for wall thinning rates, based on five parameters: temperature, pH, oxygen concentration, mass transfer coefficient, and chromium content. Then, in step 4, the 3-D CFD code was used to calculate precise mass transfer coefficients at the high FAC risk zones. In step 5, the wall thinning rates were calculated using a coupled model of electrochemical analysis and oxide layer growth analysis by applying the corrosive conditions and the mass transfer coefficients. Finally, in step 6, the residual lifetime of the pipes and the applicability of countermeasures against FAC were evaluated.This paper introduces procedures for determining major FAC parameters and evaluation procedures for high FAC risk zones by synthesizing the parameters in step 3. The procedures for determination of high FAC risk zones in a pressurized water reactor secondary cooling system are also demonstrated.