ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Shunsuke Uchida, Masanori Naitoh, Hidetoshi Okada, Hiroaki Suzuki, Soji Koikari, Seiichi Koshizuka, Derek H. Lister
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 65-77
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A14519
Articles are hosted by Taylor and Francis Online.
A modified six-step evaluation procedure has been proposed to evaluate local wall thinning due to flow-accelerated corrosion (FAC). In step 1, the one-dimensional (1-D) distribution of flow turbulence and the temperature along pipes in cooling systems were analyzed with a 1-D system simulation code to obtain approximate mass transfer coefficients at structure surfaces, prior to using a three-dimensional (3-D) computational fluid dynamics (CFD) code for precise flow turbulence analysis of the major parts. In step 2, corrosive conditions were calculated with a N2H4-O2 reaction analysis code. In step 3, high FAC risk zones were determined for further evaluation for wall thinning rates, based on five parameters: temperature, pH, oxygen concentration, mass transfer coefficient, and chromium content. Then, in step 4, the 3-D CFD code was used to calculate precise mass transfer coefficients at the high FAC risk zones. In step 5, the wall thinning rates were calculated using a coupled model of electrochemical analysis and oxide layer growth analysis by applying the corrosive conditions and the mass transfer coefficients. Finally, in step 6, the residual lifetime of the pipes and the applicability of countermeasures against FAC were evaluated.This paper introduces procedures for determining major FAC parameters and evaluation procedures for high FAC risk zones by synthesizing the parameters in step 3. The procedures for determination of high FAC risk zones in a pressurized water reactor secondary cooling system are also demonstrated.