ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
James J. Dahl, Shivi Singh, Marvin G. Zimmerman
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 1-17
Technical Paper | Fission Reactors | dx.doi.org/10.13182/NT12-A14515
Articles are hosted by Taylor and Francis Online.
This paper investigates the potential impacts of the transition to the U.S. Department of Energy (DOE) Order 420.1B requirements and the criteria promulgated by the new DOE-STD-1189 on the current practice for seismic design of structures, systems, and components (SSCs). Addressed in the review is the modification of the prescribed methodology provided in ANSI/ANS-2.6-2004 by the new DOE standard. The new ANSI/ANS standards provide criteria and guidance in selecting the seismic design category (SDC) and the limit state (LS) for the SSCs that are important to safety. An unmitigated consequence analysis considering the uncertainties in estimating failure and the safety consequences of the failure may be performed to determine the SDC and the LS, which then are used to establish the level of peak ground acceleration and design response spectra. The new DOE-STD-1189 modifies the prescribed methodology provided in ANSI/ANS-2.6-2004 for calculation of unmitigated radiological dose consequence. Unmitigated consequence analysis is a procedure that has been used by the DOE for the purpose of incorporating safety in the design and operation of its nuclear facilities and is also used in 10 CFR 70, the U.S. Nuclear Regulatory Commission regulation applicable to fuel cycle facilities, and the associated Standard Review Plan (NUREG-1520). This paper identifies the iterative DOE double-pronged approach to seismic design, and a simplified example demonstrates the unmitigated seismic hazard consequence analysis.