ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
P. Deepika, K. N. Sabharwal, T. G. Srinivasan, P. R. Vasudeva Rao
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 407-416
Technical Paper | Reprocessing | doi.org/10.13182/NT12-A14172
Articles are hosted by Taylor and Francis Online.
2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (n-Pr-BTP) was impregnated on XAD-7 resin and the extraction performance of this n-Pr-BTP/XAD-7 resin was investigated for the uptake of Am(III) from acidic nitrate solutions. The uptake behavior of the lanthanides, La(III), Ce(III), Nd(III), Eu(III), and Gd(III), as well as elements such as Ba(II), Fe(III), Mo(VI), Ru(III), Zr(IV), Cs(I), and Sr(II) was also studied in batch experiments. It was found that the resin exhibited significantly high extraction and selectivity for Am(III) over the lanthanides and other elements. Based on the results obtained from batch studies, the separation behavior of Am(III) from Eu(III) was examined by extraction chromatography using a column packed with the n-Pr-BTP/XAD-7 resin. A complete separation between Am(III) and Eu(III) was achieved from aqueous phase containing nitric acid and ammonium nitrate in the column experiment. Based on this result, experiments were performed to investigate the separation of Am(III) from the lanthanides from octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-treated high-level waste.