ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Constantine P. Tzanos, B. Dionne
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 382-391
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A14170
Articles are hosted by Taylor and Francis Online.
To support the safety analysis of the conversion of the BR2 research reactor to low-enriched uranium (LEU) fuel and extend the validation basis of the RELAP code for the analysis of the conversion of research reactors from highly enriched (HEU) fuel to LEU, the simulation of BR2 tests A/400/1, C/600/3, and F/400/1 was undertaken. These tests are characterized by loss of flow initiated at different reactor power levels with or without loss of system pressure, reactor scram, flow reversal, and reactor cooling by natural circulation. This work presents the RELAP analysis of tests C/600/3 and F/400/1 and comparison of code predictions with experimental measurements for peak cladding temperatures during the transient at different axial locations in an instrumented fuel assembly. The simulations show that accurate representation of the power distribution, especially after reactor scram, between the fuel assemblies and the moderator/reflector regions is critical for the correct prediction of the peak cladding temperatures during the transient. Detailed MCNP and ORIGEN simulations were performed to compute the power distribution between the fuel assemblies and the moderator/reflector regions. With these distributions the predicted peak cladding temperatures are in good agreement with experimental measurements.