ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Steven E. Skutnik, Man-Sung Yim
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 374-381
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A14169
Articles are hosted by Taylor and Francis Online.
The effect of simplifications in nuclear fuel depletion analysis as well as the effect of cross-section uncertainties were evaluated as to their impact upon material attractiveness for weapons diversion purposes. The effect of simplified depletion models for material attractiveness evaluation was evaluated through a comparison of pressurized water reactor fuel for several benchmark cases, using experimentally measured values along with a two-dimensional lattice physics model (TRITON) and a point depletion model (ORIGEN-S). Simplifications such as the use of the ORIGEN-S depletion libraries and assumptions of homogeneous core enrichment were found to have a negligible impact on material attractiveness evaluation, particularly relative to uncertainties in experimental measurements; additionally, simplified irradiation power histories do not introduce unacceptable errors into the attractiveness evaluation. Finally, the overall sensitivity of material attractiveness and associated uncertainty was found to be greater for transuranic mixtures compared to plutonium as a function of both burnup and decay time; however, associated uncertainties are generally small and not prohibitive to material attractiveness discrimination. As a result, the use of simplified depletion models such as ORIGEN-S appears to be well justified for use in material attractiveness evaluation for proliferation resistance studies.