ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Keeping up with Kewaunee
In October 2012, Dominion Energy announced it was closing the Kewaunee nuclear power plant, a two-loop 574-MWe pressurized water reactor located about 27 miles southeast of Green Bay, Wis., on the western shore of Lake Michigan. At the time, Dominion said the plant was running well, but that low wholesale electricity prices in the region made it uneconomical to continue operation of the single-unit merchant power plant.
D. Rochman, A. J. Koning, D. F. Da Cruz
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 323-338
Technical Paper | Fission Reactors/Fuel Cycle and Management | doi.org/10.13182/NT11-61
Articles are hosted by Taylor and Francis Online.
The effects of nuclear data uncertainties (cross sections, neutron emissions, fission yields, and decay data) on the burnup of a typical pressurized water reactor fuel element are presented in this paper. The uncertainties on reactivity swing, inventory, and radiotoxicity are obtained using a Monte Carlo method for nuclear data uncertainty propagation and the Monte Carlo transport code SERPENT. The impact of the nuclear data uncertainties for the two main actinide isotopes at the beginning of irradiation (235U and 238U) with the third and fourth most abundant actinide isotopes at the end of irradiation (236U and 239Pu) are calculated, showing the importance of fission yield data relative to transport data.