ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
Fusion Science and Technology
July 2023
Latest News
The Civil Nuclear Credit Program: An overview
Officially established on November 15, 2021, with the signing of the $1.2 trillion Infrastructure Investment and Jobs Act—aka the Bipartisan Infrastructure Law, or BIL—the Department of Energy’s Civil Nuclear Credit Program was designed to give owners/operators of commercial U.S. reactors the opportunity to apply for certification and competitively bid on credits to help support the continued operation of economically troubled units. Finally, the federal government, and not just certain farsighted state governments, would recognize nuclear energy for its important grid reliability and decarbonization attributes.
D. Rochman, A. J. Koning, D. F. Da Cruz
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 323-338
Technical Paper | Fission Reactors/Fuel Cycle and Management | doi.org/10.13182/NT11-61
Articles are hosted by Taylor and Francis Online.
The effects of nuclear data uncertainties (cross sections, neutron emissions, fission yields, and decay data) on the burnup of a typical pressurized water reactor fuel element are presented in this paper. The uncertainties on reactivity swing, inventory, and radiotoxicity are obtained using a Monte Carlo method for nuclear data uncertainty propagation and the Monte Carlo transport code SERPENT. The impact of the nuclear data uncertainties for the two main actinide isotopes at the beginning of irradiation (235U and 238U) with the third and fourth most abundant actinide isotopes at the end of irradiation (236U and 239Pu) are calculated, showing the importance of fission yield data relative to transport data.