ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
July 2023
Fusion Science and Technology
Latest News
Destruction of Ukrainian dam threatens Zaporizhzhia
A Soviet-era dam downstream from the Zaporizhzhia nuclear power plant in southeastern Ukraine collapsed last evening, causing the water level of the Kakhovka Reservoir north of the dam to drop and raising new concerns over the already jeopardized safety of the Russian-occupied nuclear facility, Europe’s largest. The reservoir supplies water for, among other things, Zaporizhzhia’s cooling systems.
Taira Hazama, Akihiro Kitano, Y. Kishimoto
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 250-265
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A14097
Articles are hosted by Taylor and Francis Online.
The Japanese prototype fast breeder reactor Monju restarted its system startup test in May 2010 after a 14-year interruption. In the first stage of the test, reactor physics parameters have been measured at a zero power level.The present paper describes the evaluation of the criticality data. The best-estimate value and its uncertainty are evaluated as accurately as possible, following the guidelines recommended by the International Criticality Safety Benchmark Evaluation Project.The restart core contains 1.5 wt% of 241Am, which is three times more than the previous test. To extract the influence of the 241Am accumulation on calculation accuracy, criticality data obtained in the previous test are evaluated at the same level of detail.The calculation accuracy is investigated with four major nuclear data libraries. It is confirmed that the accuracy is within 0.3% k/k, a 2 value of experimental uncertainty, with JENDL-3.3, JENDL-4.0, and ENDF/B-VII.0. The reactivity change due to the 241Pu decay can be simulated within an accuracy of 1% with JENDL-4.0 and JEFF-3.1.