ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
DOE issues $19 million Community Capacity Building Grant Program FOA
The Department of Energy’s Office of Environmental Management released a competitive funding opportunity announcement (FOA) on December 6 for the Community Capacity Building Grant Program, aimed at communities affected by DOE-EM’s mission to clean up legacy nuclear waste.
Kyuhak Oh, Mark A. Prelas, Eric D. Lukosi, Jason B. Rothenberger, Robert J. Schott, Charles L. Weaver, Daniel E. Montenegro, Denis A. Wisniewski
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 243-249
Technical Paper | Radioisotopes | doi.org/10.13182/NT12-A14096
Articles are hosted by Taylor and Francis Online.
This paper presents a study on the optimization of the amount of energy deposited by alpha particles in the depletion region of a silicon carbide (SiC) alphavoltaic cell using Monte Carlo models. Three Monte Carlo codes were used in this study: SRIM/TRIM, GEANT4, and MCNPX. The models examined the transport of 5.307-MeV alpha particles emitted by 210Po. Energy deposition in a 1-m depletion region of SiC was calculated using an isotropic alpha source for a spherical geometry using GEANT4, and a monodirectional alpha source for a slab geometry using both SRIM/TRIM and GEANT4. In addition, an isotropic point source was modeled using GEANT4 and MCNPX for a slab geometry. These geometries were optimized for the maximum possible alphavoltaic energy efficiency. The models, which match very well, indicate that the maximum theoretical energy conversion efficiency, which was optimized for a SiC alphavoltaic cell, is [approximately]3.6% for the isotropic alpha source on a slab geometry and 2.1% for both the monodirectional alpha source on a slab geometry and the isotropic alpha source at the center of a sphere. This study provides a useful guide governing the upper limit of expected efficiency for an alphavoltaic cell using a linearly graded single junction SiC transducer.