ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
July 2023
Fusion Science and Technology
Latest News
Destruction of Ukrainian dam threatens Zaporizhzhia
A Soviet-era dam downstream from the Zaporizhzhia nuclear power plant in southeastern Ukraine collapsed last evening, causing the water level of the Kakhovka Reservoir north of the dam to drop and raising new concerns over the already jeopardized safety of the Russian-occupied nuclear facility, Europe’s largest. The reservoir supplies water for, among other things, Zaporizhzhia’s cooling systems.
Kyuhak Oh, Mark A. Prelas, Jason B. Rothenberger, Eric D. Lukosi, Jeho Jeong, Daniel E. Montenegro, Robert J. Schott, Charles L. Weaver, Denis A. Wisniewski
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 234-242
Technical Paper | Radioisotopes | doi.org/10.13182/NT12-A14095
Articles are hosted by Taylor and Francis Online.
Monte Carlo simulations have been used for calculating the energy deposition of beta particles in the depletion region of a silicon carbide (SiC) betavoltaic cell along with the corresponding theoretical efficiencies. Three Monte Carlo codes were used in the study: GEANT4, PENELOPE, and MCNPX. These codes were used to examine the transportation of beta particles from 90Y, 90Sr, and 35S. Both the average beta energy from each source and the entire spectrum were modeled for calculating maximum theoretical energy deposition in both a spherical and slab geometry. A simulated depletion region was added in postprocessing containing the maximum energy deposited per micrometer. The calculated maximum efficiencies with the slab configuration model are approximately 1.95%, 0.30%, and 0.025% using monoenergetic average energy and 1.54%, 0.25%, and 0.019% using an energy spectrum for 35S, 90Sr, and 90Y, respectively. These efficiencies when using the spherical configuration model are 2.02%, 0.31%, and 0.023% using the monoenergetic average energy and 1.10%, 0.17%, and 0.013% using an energy spectrum for 35S, 90Sr, and 90Y, respectively.