ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Don't forget to vote!
The 2021 ANS Election is open. This is your chance to help shape the future of your Society.
All ANS members were sent an email on February 22 with a unique username and password from Survey & Ballot Systems (SBS). If you did not receive this email or you do not have your election login information, please go to directvote.net/ANS, enter your email address that is on file with ANS, and your election login information will be emailed to you.
Yoshiharu Sakamura, Masaaki Akagi
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 220-233
Technical Paper | Reprocessing | dx.doi.org/10.13182/NT179-220
Articles are hosted by Taylor and Francis Online.
A series of pyrochemical reprocessing tests involving pretreatment, electrolytic reduction, and electrorefining processes were conducted using [approximately]100 g of simulated spent oxide fuel. In the pretreatment process, a simulated spent oxide fuel consisting of dense UO2 pellets containing typical fission product elements (strontium, cerium, neodymium, samarium, zirconium, palladium, and molybdenum) was powderized by voloxidation, which corresponds to fuel decladding. Porous oxide pellets were then fabricated from the obtained oxide powder. In the electrolytic reduction process, [approximately]100 g of the porous oxide pellets was loaded in a cathode basket and electrolytic reduction was performed for 7.6 h in a LiCl-Li2O salt at 650°C. The UO2 was reduced to metallic uranium with a reduction yield of 99.2% and a current efficiency of 74%. All the strontium dissolved into the salt. It was verified that the preparation of porous oxide pellets was highly advantageous in improving the rate of oxide reduction. In the subsequent electrorefining process, the reduction product was loaded in an anode basket and electrorefining was performed for 5.8 h in a LiCl-KCl-UCl3 salt at 500°C. Most of the uranium in the reduction product was anodically dissolved in the salt and the refined uranium metal was collected on a stainless steel cathode. Most of the rare earth elements were dissolved in the salt, whereas zirconium, palladium, and molybdenum remained in the anode residue. The concentration of UCl3 in the salt slightly decreased during electrorefining, since U3+ reacted with the oxides contained in the reduction product to form a uranium oxide precipitate.