ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Tae-Hoon Lee, Young-Soo Kim, Tae-Je Kwon, Hee-Sung Shin, Ho-Dong Kim
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 196-204
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT11-77
Articles are hosted by Taylor and Francis Online.
In pyroprocessing it is important to determine the amount of Pu in the various streams of materials involved. This paper presents two approaches to determine the Pu mass of spent fuel assemblies using nondestructive assay and burnup simulation code. Cm balance is adopted and the concept of "Cm ratio," the mass ratio of Pu to Cm, is used for the nuclear material accountancy for the model pyroprocessing facility. The biggest error of the nuclear material accountancy is expected to arise from the determination of Pu mass and Cm ratio in input homogeneously mixed uranium oxide powder, which is assayed nondestructively. One approach to determine the Pu mass and Cm ratio is to apply the average burnup of spent fuel and determine the Pu mass and Cm ratio by using the ORIGEN code. The estimated error in Pu mass determined by this method ranges from 0.94% to 2.33% for a total of 225 spent fuel assemblies of various burnup, initial enrichment, and cooling time. The other approach is to use the functional relationship between the neutron emission rate and Pu mass of spent fuel. The error in Pu mass calculated using this method ranges from -1.68% to 3.86%.