ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Tae-Hoon Lee, Young-Soo Kim, Tae-Je Kwon, Hee-Sung Shin, Ho-Dong Kim
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 196-204
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT11-77
Articles are hosted by Taylor and Francis Online.
In pyroprocessing it is important to determine the amount of Pu in the various streams of materials involved. This paper presents two approaches to determine the Pu mass of spent fuel assemblies using nondestructive assay and burnup simulation code. Cm balance is adopted and the concept of "Cm ratio," the mass ratio of Pu to Cm, is used for the nuclear material accountancy for the model pyroprocessing facility. The biggest error of the nuclear material accountancy is expected to arise from the determination of Pu mass and Cm ratio in input homogeneously mixed uranium oxide powder, which is assayed nondestructively. One approach to determine the Pu mass and Cm ratio is to apply the average burnup of spent fuel and determine the Pu mass and Cm ratio by using the ORIGEN code. The estimated error in Pu mass determined by this method ranges from 0.94% to 2.33% for a total of 225 spent fuel assemblies of various burnup, initial enrichment, and cooling time. The other approach is to use the functional relationship between the neutron emission rate and Pu mass of spent fuel. The error in Pu mass calculated using this method ranges from -1.68% to 3.86%.