ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Alan H. Wells, Albert J. Machiels
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 180-188
Technical Paper | Reactor Safety | doi.org/10.13182/NT12-A14090
Articles are hosted by Taylor and Francis Online.
Spent nuclear fuel transported in large casks must remain subcritical in all credible configurations for normal operation and hypothetical accident conditions. The effects on spent nuclear fuel reactivity from "worst-case" accident scenarios were surveyed in NUREG/CR-6835, "Effects of Fuel Failure on Criticality Safety and Radiation Dose for Spent Fuel Casks." The survey used scenarios that were postulated to provide theoretical upper limits for reactivity effects of fuel relocation, although they were described as going "beyond credible conditions." These scenarios involved physical changes either to fuel assembly rod arrays or to collections of fuel pellets with the fuel skeleton removed. To provide more credible estimates of the probability and maximum reactivity changes, a process is presented that deconstructs each scenario into a set of subscenarios and identifies the physical phenomena required to create the subscenario. The boundary between credible but unlikely scenarios and incredible scenarios is more easily discernible with this process.For marginally credible worst-case scenarios, it is concluded that the maximum reasonable reactivity increase either is less than the mandated administrative nuclear criticality safety margin for scenarios involving physical changes to fuel assembly rod arrays or is a substantial reactivity decrease for scenarios involving collections of fuel pellets. A cask designer could apply scenario deconstruction to evaluate the physical limits that apply to a particular transportation cask, and perform calculations specific to a particular cask design to show that criticality safety requirements are met.