ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Chris Kennedy, Cristian Rabiti, Hany Abdel-Khalik
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 169-179
Technical Paper | Fission Reactors | doi.org/10.13182/NT179-169
Articles are hosted by Taylor and Francis Online.
Generalized perturbation theory (GPT) has been recognized as the most computationally efficient approach for performing sensitivity analysis for models with many input parameters, which renders forward sensitivity analysis computationally overwhelming. In critical systems, GPT involves the solution of the adjoint form of the eigenvalue problem with a response-dependent fixed source. Although conceptually simple to implement, most neutronics codes that can solve the adjoint eigenvalue problem do not have a GPT capability unless envisioned during code development. We introduce in this manuscript a reduced-order modeling approach based on subspace methods that requires the solution of the fundamental adjoint equations but allows the generation of response sensitivities without the need to set up GPT equations, and that provides an estimate of the error resulting from the reduction. Moreover, the new approach solves the eigenvalue problem independently of the number or type of responses. This allows for an efficient computation of sensitivities when many responses are required. This paper introduces the theory and implementation details of the GPT-free approach and describes how the errors could be estimated as part of the analysis. The applicability is demonstrated by estimating the variations in the flux distribution everywhere in the phase space of a fast critical sphere and a high-temperature gas-cooled reactor prismatic lattice. The variations generated by the GPT-free approach are benchmarked to the exact variations generated by direct forward perturbations.