ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
Chris Kennedy, Cristian Rabiti, Hany Abdel-Khalik
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 169-179
Technical Paper | Fission Reactors | doi.org/10.13182/NT179-169
Articles are hosted by Taylor and Francis Online.
Generalized perturbation theory (GPT) has been recognized as the most computationally efficient approach for performing sensitivity analysis for models with many input parameters, which renders forward sensitivity analysis computationally overwhelming. In critical systems, GPT involves the solution of the adjoint form of the eigenvalue problem with a response-dependent fixed source. Although conceptually simple to implement, most neutronics codes that can solve the adjoint eigenvalue problem do not have a GPT capability unless envisioned during code development. We introduce in this manuscript a reduced-order modeling approach based on subspace methods that requires the solution of the fundamental adjoint equations but allows the generation of response sensitivities without the need to set up GPT equations, and that provides an estimate of the error resulting from the reduction. Moreover, the new approach solves the eigenvalue problem independently of the number or type of responses. This allows for an efficient computation of sensitivities when many responses are required. This paper introduces the theory and implementation details of the GPT-free approach and describes how the errors could be estimated as part of the analysis. The applicability is demonstrated by estimating the variations in the flux distribution everywhere in the phase space of a fast critical sphere and a high-temperature gas-cooled reactor prismatic lattice. The variations generated by the GPT-free approach are benchmarked to the exact variations generated by direct forward perturbations.