ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
Fusion Science and Technology
July 2023
Latest News
The Civil Nuclear Credit Program: An overview
Officially established on November 15, 2021, with the signing of the $1.2 trillion Infrastructure Investment and Jobs Act—aka the Bipartisan Infrastructure Law, or BIL—the Department of Energy’s Civil Nuclear Credit Program was designed to give owners/operators of commercial U.S. reactors the opportunity to apply for certification and competitively bid on credits to help support the continued operation of economically troubled units. Finally, the federal government, and not just certain farsighted state governments, would recognize nuclear energy for its important grid reliability and decarbonization attributes.
Per F. Peterson
Nuclear Technology | Volume 179 | Number 1 | July 2012 | Pages 45-51
Technical Paper | Special Issue on Safeguards / Fuel Cycle and Management | doi.org/10.13182/NT179-45
Articles are hosted by Taylor and Francis Online.
The proliferation resistance and physical protection evaluation methodology provides a structured approach to assess a nuclear energy system's capability to respond to security challenges. The methodology applies a threat/system response/outcome framework to identify and characterize potential system vulnerabilities, and to guide designers toward system designs that minimize or eliminate these vulnerabilities. Application of the methodology during conceptual design provides an opportunity to develop functional requirements and design bases that can be used subsequently in the detailed design to achieve high proliferation resistance and physical protection robustness. This paper reviews the major elements of the methodology, including insights from recent studies using the methodology.