ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano Nuclear wins Air Force contract for Kronos MMR
New York City–based advanced nuclear technology developer Nano Nuclear Energy has been awarded a Direct-to-Phase II Small Business Innovation Research contract for its Kronos micro modular reactor (MMR) by AFWERX, the innovation and venture arm of the U.S. Air Force. The contract calls for AFWERX, with the 11th Civil Engineering Squadron, to explore the feasibility of deploying the Kronos MMR Energy System at Joint Base Anacostia-Bolling (JBAB) in Washington, D.C.
Darryl D. Siemer
Nuclear Technology | Volume 178 | Number 3 | June 2012 | Pages 341-352
Technical Note | Reprocessing | doi.org/10.13182/NT12-A13599
Articles are hosted by Taylor and Francis Online.
An often cited weakness of the Integral Fast Reactor (IFR) concept is that the chloride salt-based radioactive waste generated by its electrorefiner (ER) cannot be vitrified. Although that assertion is literally true, it is also misleading because it would be quite simple to recycle that waste's chloride and vitrify its cationic components (mostly alkali metals and fission products). Producing this alternative to Argonne National Laboratory's ceramic waste form would entail vitrification of a mixture of orthophosphoric acid, ferric oxide, and powdered ER salt with a melter able to efficiently disengage gas bubbles, e.g., a Stir Melter. The HCl evolved by this process would be absorbed by an aqueous lithium/potassium hydroxide scrub solution, which would then be dried and recycled as fresh ER electrolyte. Because radioiodide would otherwise accumulate in the ER salt, the caustic scrub solution would occasionally be contacted with cuprous or silver chloride before recycle. This scenario's primary advantages would be much lower cost and approximately fivefold greater effective waste loading. This paper describes the experimental work supporting these contentions.