ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
FERC to look at grid reliability
Spurred by last week’s power grid failure in Texas, the Federal Energy Regulatory Commission on Monday announced that it will open a new proceeding to examine the threat that climate change and extreme weather events pose to electric reliability. The proceeding, FERC said, will investigate how grid operators prepare for and respond to these events, including droughts, extreme cold, wildfires, hurricanes, and prolonged heat waves.
M. Balbás, C. Montalvo, A. García-Berrocal, J. Blázquez
Nuclear Technology | Volume 178 | Number 3 | June 2012 | Pages 318-323
Technical Paper | Radiation Measurements and General Instrumentation | dx.doi.org/10.13182/NT12-A13596
Articles are hosted by Taylor and Francis Online.
In this work, a methodology is proposed to find the dynamic poles of a capacitive pressure transmitter in order to enhance and extend the online surveillance of this type of sensor based on the response time measurement by applying noise analysis techniques and the dynamic data system procedure. Several measurements taken from a pressurized water reactor have been analyzed. The methodology proposes an autoregressive fit whose order is determined by the sensor dynamic poles. Nevertheless, the signals that have been analyzed could not be filtered properly in order to remove the plant noise; thus, this was considered as an additional pair of complex conjugate poles. With this methodology we have come up with the numerical value of the sensor second real pole in spite of its low influence on the sensor dynamic response. This opens up a more accurate online sensor surveillance since the previous methods were achieved by considering one real pole only.