ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Shunsuke Uchida, Masanori Naitoh, Hidetoshi Okada, Taku Ohira, Seiichi Koshizuka, Derek H. Lister
Nuclear Technology | Volume 178 | Number 3 | June 2012 | Pages 280-297
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13594
Articles are hosted by Taylor and Francis Online.
A six-step evaluation procedures have been proposed to evaluate the local wall thinning due to flow-accelerated corrosion (FAC) and that due to liquid droplet impingement (LDI). Corrosive conditions were calculated with a N2H4-O2 reaction analysis code. Precise flow turbulence at major parts of the system was analyzed with the three-dimensional computational flow dynamics code to obtain mass transfer coefficients at structure surfaces. Then, wall thinning rates were calculated with the coupled model of electrochemical analysis and oxide layer growth analysis by applying the corrosive conditions and the mass transfer coefficients.To apply computer simulation codes for wall thinning due to FAC and LDI to evaluate residual life and the effectiveness of countermeasures, accuracy and applicability of the codes were confirmed based on verification and validation processes. From comparison of the calculated wall thinning rates due to FAC with hundreds of measured results for secondary piping of an actual pressurized water reactor plant, it was confirmed that the calculated wall thinning rates agreed with the measured ones within a factor of 2 and the accuracy of the evaluation model for residual pipe wall thickness after 1 year of operation had an error of <20%. Finally, just the FAC simulation code was applied to evaluate the effects of oxygen injection into the feedwater line.From comparison of the calculated wall thinning rates due to LDI with measured results for vent lines of an actual boiling water reactor plant, it was confirmed that the calculated local wall thinning rates agreed with the measured ones within about a factor of 2, though there were still some outside that region.