ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Raymond S. Troy, Robert V. Tompson, Tushar K. Ghosh, Sudarshan K. Loyalka
Nuclear Technology | Volume 178 | Number 3 | June 2012 | Pages 241-257
Technical Paper | Fission Reactors | doi.org/10.13182/NT11-48
Articles are hosted by Taylor and Francis Online.
Graphite particle generation by interpebble abrasion and by abrasion of pebbles with the containment vessel during operation of a pebble bed reactor is an issue of interest in the safety analysis of this class of very high temperature reactor. To understand particle generation, we have constructed an apparatus to generate graphite particles from preformed graphite hemispheres under rotational/spinning abrasive loading. We have initially used commercial-grade graphites in our experiments and have generated size distributions for the abraded particles, determined particle shapes, and measured the particle surface areas, pore volumes, and pore volume distributions of particles produced during abrasion of graphite surfaces under different conditions. The size distributions were studied using an Aerodynamic Particle Sizer™ and a Scanning Mobility Particle Sizer.™ Most of the particles observed were in the range from 18.1 to 600 nm in diameter. The scanning electron micrographs showed that the particles tend to be irregular in shape and porous in nature. We have also conducted Brunauer-Emmett-Teller surface area and pore volume measurements that have verified the highly porous nature of the particles. The calculated surface area and open porosity for our initial measurements of the particles from this particular grade of commercial graphite were found to be 626 m2 g-1 and 68%, respectively. In addition, the average surface roughness of fresh samples was 0.966 Ra m at the point of contact.