ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
Brian S. Triplett, Eric P. Loewen, Brett J. Dooies
Nuclear Technology | Volume 178 | Number 2 | May 2012 | Pages 186-200
Technical Paper | Small Modular Reactors / Fission Reactors | doi.org/10.13182/NT178-186
Articles are hosted by Taylor and Francis Online.
The Power Reactor Innovative Small Module (PRISM) designed by GE Hitachi Nuclear Energy is a small, modular, sodium-cooled fast reactor. The PRISM core is located in a pool-type containment vessel and is fueled with metallic fuel. Each PRISM produces 311 MW of electricity. The PRISM is inherently safe due to its negative power reactivity feedback, large in-vessel coolant inventory, passive heat removal systems, below-grade siting, and atmospheric reactor vessel operating pressure. In NUREG-1368, "Preapplication Safety Evaluation Report for the Power Reactor Innovative Small Module (PRISM) Liquid-Metal Reactor," the U.S. Nuclear Regulatory Commission stated that "On the basis of the review performed, the staff, with the ACRS [Advisory Committee on Reactor Safeguards] in agreement, concludes that no obvious impediments to licensing the PRISM design have been identified." PRISM is able to fission electrometallurgically recycled used nuclear fuel (UNF) from light water reactors as well as weapons-grade materials. PRISM, with the associated Nuclear Fuel Recycling Center, represents a safe, diversion resistant, commercially viable technology for recycling UNF with a small modular reactor.