ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Bojan Petrovic, Marco Ricotti, Stefano Monti, Nikola Cavlina, Hisashi Ninokata
Nuclear Technology | Volume 178 | Number 2 | May 2012 | Pages 126-152
Technical Paper | Small Modular Reactors / Fission Reactors | dx.doi.org/10.13182/NT12-A13555
Articles are hosted by Taylor and Francis Online.
This paper presents an overview of the first 10 years of the IRIS project, summarizing its main technical achievements and evaluating its impact on the resurgence of small modular reactors (SMRs). SMRs have been recurrently studied in the past, from early days of nuclear power, but have never gained sufficient traction to reach commercialization. This situation persisted also in the 1990s; the focus was on large reactors based on the presumed common wisdom of this being the only way to make the nuclear power plants competitive. IRIS is one of several small reactor concepts that originated in the late 1990s. However, the specific role and significance of IRIS is that it systematically pursued resolving technology gaps, addressing safety, licensing, and deployment issues and performing credible economics analyses, which ultimately made it possible - together with other SMR projects - to cross the "skepticism threshold" and led the making of a convincing case - domestically and internationally - for the role and viability of smaller reactors. Technologically, IRIS is associated with a number of novel design features that it either introduced or pursued more systematically than its predecessors and ultimately brought them to a new technical level. Some of these are discussed in this paper, such as the IRIS Safety-by-Design, security by design, the innovative thermodynamic coupling of its vessel and containment, systematic probabilistic risk assessment-guided design, approach to seismic design, approach to reduce the emergency planning zone to the site boundary, active involvement of academia, and so on. Many individuals and organizations contributed to that work, too many to list individually, and this paper attempts to pay tribute at least to their collective work.