ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Bojan Petrovic, Marco Ricotti, Stefano Monti, Nikola Cavlina, Hisashi Ninokata
Nuclear Technology | Volume 178 | Number 2 | May 2012 | Pages 126-152
Technical Paper | Small Modular Reactors / Fission Reactors | doi.org/10.13182/NT12-A13555
Articles are hosted by Taylor and Francis Online.
This paper presents an overview of the first 10 years of the IRIS project, summarizing its main technical achievements and evaluating its impact on the resurgence of small modular reactors (SMRs). SMRs have been recurrently studied in the past, from early days of nuclear power, but have never gained sufficient traction to reach commercialization. This situation persisted also in the 1990s; the focus was on large reactors based on the presumed common wisdom of this being the only way to make the nuclear power plants competitive. IRIS is one of several small reactor concepts that originated in the late 1990s. However, the specific role and significance of IRIS is that it systematically pursued resolving technology gaps, addressing safety, licensing, and deployment issues and performing credible economics analyses, which ultimately made it possible - together with other SMR projects - to cross the "skepticism threshold" and led the making of a convincing case - domestically and internationally - for the role and viability of smaller reactors. Technologically, IRIS is associated with a number of novel design features that it either introduced or pursued more systematically than its predecessors and ultimately brought them to a new technical level. Some of these are discussed in this paper, such as the IRIS Safety-by-Design, security by design, the innovative thermodynamic coupling of its vessel and containment, systematic probabilistic risk assessment-guided design, approach to seismic design, approach to reduce the emergency planning zone to the site boundary, active involvement of academia, and so on. Many individuals and organizations contributed to that work, too many to list individually, and this paper attempts to pay tribute at least to their collective work.