ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Robert C. Moore, Milton E. Vernon, Edward J. Parma, Paul S. Pickard, Gary E. Rochau
Nuclear Technology | Volume 178 | Number 1 | April 2012 | Pages 111-118
Technical Paper | Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Nuclear Hydrogen Production | doi.org/10.13182/NT12-A13551
Articles are hosted by Taylor and Francis Online.
In this work, we describe a novel design for a H2SO4 decomposer. The decomposition of H2SO4 to produce SO2 is a common processing operation in the sulfur-based thermochemical cycles for hydrogen production where acid decomposition takes place at 850°C in the presence of a catalyst. The combination of a high temperature and sulfuric acid creates a very corrosive environment that presents significant design challenges. The new decomposer design is based on a bayonet-type heat exchanger tube with the annular space packed with a catalyst. The unit is constructed of silicon carbide and other highly corrosion-resistant materials. The new design integrates acid boiling, superheating, decomposition, and heat recuperation into a single process and eliminates problems of corrosion and failure of high-temperature seals encountered in previous testing using metallic construction materials. The unit was tested by varying the acid feed rate and decomposition temperature and pressure.