ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Geoffrey Haratyk, Charles W. Forsberg
Nuclear Technology | Volume 178 | Number 1 | April 2012 | Pages 66-82
Technical Paper | Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Nuclear Hydrogen Production | doi.org/10.13182/NT12-A13548
Articles are hosted by Taylor and Francis Online.
In the future the world may have large stranded resources of low-cost wind and solar electricity. Renewable electricity production does not match demand, and production is far from major cities. The coupling of nuclear energy with renewables may enable full utilization of nuclear and renewable facilities to meet local electricity demands and export pipeline hydrogen for liquid fuels, fertilizer, and metals production. Renewables would produce electricity at full capacity in large quantities. The base-load nuclear plants would match electricity production with demand by varying the steam used for electricity versus hydrogen production. High-temperature electrolysis (HTE) would produce hydrogen from water using (a) steam from nuclear plants and (b) electricity from nuclear plants and renewables. During times of peak electricity demand, the HTE cells would operate in reverse fuel cell mode to produce power, substituting for gas turbines that are used for very few hours per year and that thus have very high electricity costs. The important net hydrogen production would be shipped by pipeline to customers. Local hydrogen storage would enable full utilization of long-distance pipeline capacity with variable production. The electricity and hydrogen production were simulated with real load and wind data to understand under what conditions such systems are economic. The parametric case study uses a wind-nuclear system in North Dakota with hydrogen exported to the Chicago refinery market. North Dakota has some of the best wind conditions in the United States and thus potentially low-cost wind. The methodology allows assessments with different economic and technical assumptions - including what electrolyzer characteristics are most important for economic viability.