ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
T. Albert Hu
Nuclear Technology | Volume 178 | Number 1 | April 2012 | Pages 39-54
Technical Paper | Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners | dx.doi.org/10.13182/NT12-A13546
Articles are hosted by Taylor and Francis Online.
Hydrogen is the major flammable gas observed in the dome space of each million-gallon radioactive waste storage tank at the U.S. Department of Energy Hanford Site. Semiempirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion. The rate equations account for tank waste composition, temperature, radiation dose rate, and liquid fraction. Numerical parameters are established by the analysis of gas generation kinetic data from actual waste samples, literature data, and waste characterization and field surveillance data. The model improvement includes development of refined water radiolysis equations, accounting of total alpha radiation contribution to both water and organic radiolysis, new parameterization on the rate equations of organic thermolysis and radiolysis with extra tank waste gas generation test data, and revised corrosion rate equations. A comparison of the generation rates observed in the field with the rates calculated for 28 tanks shows agreement within a factor of 3. The model serves as a useful tool to evaluate flammable gas issues to support Hanford operations.