ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Kyoung-Ho Kang, Hyun-Sik Park, Seok Cho, Nam-Hyun Choi, In-Cheol Chu, Byong-Jo Yun, Kyung-Doo Kim, Yeon-Sik Kim, Won-Pil Baek, Ki-Yong Choi
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 382-394
Technical Paper | Nuclear Plant Operations and Control | dx.doi.org/10.13182/NT12-A13482
Articles are hosted by Taylor and Francis Online.
A postulated steam generator tube rupture (SGTR) event of the APR1400 (Advanced Power Reactor 1400 MWe) was experimentally investigated with the thermal-hydraulic integral effect test facility ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation). The SGTR accident is one of the design-basis accidents having a significant impact on safety from the viewpoint of radiological release. To simulate a SGTR accident of the APR1400, the SGTR-HL-04 and the SGTR-HL-05 tests were performed by simulating double-ended ruptures of a single U-tube and five U-tubes at the hot side of the ATLAS steam generator. Following the reactor trip induced by a high steam generator level signal, the primary-system pressure decreased and the secondary-system pressure increased until the main steam safety valves were opened to reduce the secondary-system pressure. A mild change of the water level in the core was observed, which was attributed to the small break sizes of the present tests compared with conventional loss-of-coolant-accident tests. No excursion in the cladding temperature was observed in either test. The break area affected the timing of the major events observed in the tests. Lessened heat transfer to the secondary side caused by earlier actuation of the safety injection pumps had more influence on the secondary pressure of the affected steam generator than the break flow. The break flow was discharged as single-phase water in both tests.