ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Michael Philip Short, Ronald George Ballinger
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 366-381
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT12-A13481
Articles are hosted by Taylor and Francis Online.
A material system that resists lead-bismuth attack and retains its strength at very high temperatures has been developed that enables increased outlet temperature and the promise of allowing increased coolant velocity and efficiency of lead- and lead-bismuth-cooled reactors if the behavior reported here is confirmed by long-term tests. The development of this system represents an enabling technology for lead-bismuth-cooled reactors. The system is a functionally graded composite (FGC), with separate layers engineered to perform corrosion resistance and structural functions. Alloy F91 was chosen as the structural layer of the composite because of its strength and radiation resistance. An Fe-12Cr-2Si alloy was developed based on previous work in the Fe-Cr-Si system, and was used as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in lead and lead-bismuth in both oxidizing and reducing environments. The availability of the FGC will have significant impacts on lead-bismuth reactor design. The allowable increases in outlet temperature and coolant velocity lead to a large increase in power density - either to a smaller core for the same power rating or to more power output for the same-size core. In this paper, we report on the overall design of the FGC. We also discuss the general implications for lead-bismuth-cooled reactor design. In a future paper, we will discuss the fabrication and the initial evaluation of the actual product produced using commercial processing methods.