ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Jong-Won Kim, Jong-Soo Choi, Young-In Kim, Young-Jong Chung, Goon-Cherl Park
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 336-351
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13479
Articles are hosted by Taylor and Francis Online.
SMART (System-integrated Modular Advanced ReacTor) is an integral-type nuclear reactor for cogeneration that adopts a flow mixing header assembly (FMHA) to maintain a uniform temperature distribution in the coolant at the core inlet in the case of failure in the steam generator or reactor coolant pump. The SMART FMHA is important for enhancing thermal mixing of the coolant during a transient and even during accidents, so it is essential that the thermal-hydraulic characteristics of flow in the FMHA be understood. Scaling analysis was performed to design the experimental facility for the FMHA test through computational fluid dynamics (CFD) analysis on the SMART prototype and experimental model. The experimental facility was designed by a linear scaling factor 0.18, and the experimental pressure and temperature conditions were 0.1 MPa and 30°C to 60°C, respectively.The experiment was performed in two ways: using FMHAs with large outlet flow hole sizes and FMHAs with small outlet flow hole sizes. In the cases of failure of one or two steam generators, the maximum temperature deviation on the side of the reactor core inlet was measured to be 1°C to 2°C, which demonstrates excellent thermal mixing through the FMHA. In particular, the FMHA with small outlet flow hole sizes tended to have better thermal mixing than the FMHA with large outlet flow hole sizes. The experimental results were comparable to those from CFD analysis.