ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jong-Won Kim, Jong-Soo Choi, Young-In Kim, Young-Jong Chung, Goon-Cherl Park
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 336-351
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13479
Articles are hosted by Taylor and Francis Online.
SMART (System-integrated Modular Advanced ReacTor) is an integral-type nuclear reactor for cogeneration that adopts a flow mixing header assembly (FMHA) to maintain a uniform temperature distribution in the coolant at the core inlet in the case of failure in the steam generator or reactor coolant pump. The SMART FMHA is important for enhancing thermal mixing of the coolant during a transient and even during accidents, so it is essential that the thermal-hydraulic characteristics of flow in the FMHA be understood. Scaling analysis was performed to design the experimental facility for the FMHA test through computational fluid dynamics (CFD) analysis on the SMART prototype and experimental model. The experimental facility was designed by a linear scaling factor 0.18, and the experimental pressure and temperature conditions were 0.1 MPa and 30°C to 60°C, respectively.The experiment was performed in two ways: using FMHAs with large outlet flow hole sizes and FMHAs with small outlet flow hole sizes. In the cases of failure of one or two steam generators, the maximum temperature deviation on the side of the reactor core inlet was measured to be 1°C to 2°C, which demonstrates excellent thermal mixing through the FMHA. In particular, the FMHA with small outlet flow hole sizes tended to have better thermal mixing than the FMHA with large outlet flow hole sizes. The experimental results were comparable to those from CFD analysis.