ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Alexandre Vauselle, Yves Pontillon, Laurent Gallais
Nuclear Technology | Volume 177 | Number 2 | February 2012 | Pages 285-292
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT12-A13372
Articles are hosted by Taylor and Francis Online.
Speckle interferometry is an optical technique able to measure and to image displacement of surface. An original setup is used to investigate the measurement of a deformed cylinder as a feasibility study. This shape allows us to determine the capability of this technique to measure nuclear fuel rod cladding. Indeed, in a nuclear reactor, the fuel rod undergoes different physical phenomena that induce dimensional changes in the cladding. The aim of this study is to quantify the amplitude of local ridges appearing on the outer cladding surface due to the "hourglass shape" assumed by the pellets under irradiation.Because of the environmental constraints imposed by testing, an optical measuring device will be used to experimentally characterize mechanical strain induced by the interaction between the cladding and the fuel pellets. The aim of this paper is to examine the experimental feasibility of speckle interferometry using model samples.An experimental setup based on the speckle interferometry technique was therefore implemented to measure local deformation in nuclear fuel cladding. Different experiments on model samples have shown that this technique is well adapted to the measuring range, shape, and condition of the surface as well as the working distance.