ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Jeffrey W. Lane, David L. Aumiller, Jr., Lawrence E. Hochreiter, Fan-Bill Cheung
Nuclear Technology | Volume 177 | Number 2 | February 2012 | Pages 176-187
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13364
Articles are hosted by Taylor and Francis Online.
A three-field countercurrent flow limitation (CCFL) model based on the classic flooding curve methodology has been developed and successfully demonstrated in a derivative of the COBRA-TF code. The various physical mechanisms (wave reversal, liquid bridging, and wave interfacial instability) supposed to govern the flooding and flow reversal phenomena are extremely complex and geometric dependent. As a result universally applicable numerical models for these phenomena are not currently available. The chosen approach provides flexibility and leverages the available experimental data to improve the predictive capability of the code. The model is an extension of the standard two-field (liquid-vapor) CCFL model to a three-field (liquid films, vapor, and liquid droplets) CCFL model. This extension includes providing the appropriate set of momentum equations, definitions of required superficial velocities, and new entrainment rate correlations based on CCFL conditions. Necessary criteria to enter and exit the model in a numerically stable manner are also described. The implementation of the model was verified and was shown to provide increased numerical stability in the code predictions. Improvement in the code-to-data agreement of the allowable downward liquid penetration rate for the Dukler and Smith experiments is also demonstrated.