ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Song Hyun Kim, Hong-Chul Kim, Jong Kyung Kim, Jea Man Noh
Nuclear Technology | Volume 177 | Number 2 | February 2012 | Pages 147-156
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A13362
Articles are hosted by Taylor and Francis Online.
The Dancoff factor is used in deterministic codes for the calculation of resonance absorption. In using the Monte Carlo simulation, some techniques, such as repeated structure, are commonly used for geometry modeling of pebbles and kernels. However, these methods, with some assumptions, can cause an error in the calculation of the Dancoff factor. In this study, a Monte Carlo simulation method for the evaluation of the Dancoff factor was developed to solve these problems. Random sampling and rejection techniques are used for geometry modeling of pebbles and kernels. Also, the random selection method of the pebble type is used for modeling of the fuel and moderator pebbles that are randomly mixed in the core. By using this method, the Dancoff factor was calculated, and the results were compared with the results calculated by the INTRAPEB code and the MCNP5 code. The results of the average intrapebble Dancoff factor agree well within 1% difference compared with the result of the other study that was calculated by the INTRAPEB code. The result of the average interpebble Dancoff factor was underestimated by [approximately]8%, compared with the result by using the MCNP5 code. Analysis shows that the difference is caused by modeling assumptions in using the MCNP5 code. In addition, the Dancoff factor of the HTR-PRTEUS reactor and its spatial dependency were evaluated. The results show that the method can be used in the calculation of the Dancoff factor with the consideration of the spatial dependency with good accuracy. It is expected that the method can simply calculate the average Dancoff factor calculation without the direct modeling of the complex pebble bed reactor geometries. Also, the Monte Carlo simulations with various fuel-to-moderator ratios can be evaluated. Therefore, it will be a powerful method to evaluate the Dancoff factor with consideration of a real geometrical distribution for the pebble bed reactors.