ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Miltiadis Alamaniotis, Andreas Ikonomopoulos, Lefteri H. Tsoukalas
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 132-145
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT12-A13333
Articles are hosted by Taylor and Francis Online.
Nuclear power plants are complex engineering systems comprised of many interacting and interdependent mechanical components whose failure might lead to degraded plant performance or unplanned shutdown with loss of power generation and negative economic impact. As a result, continuous component surveillance and accurate prediction of their failing points is necessary for their on-time replacement. In this paper, a probabilistic kernel approach for intelligent online monitoring of mechanical components is presented. Specifically, the probabilistic kernel notion of Gaussian processes (GPs) is applied to the distribution prediction of a component's degradation trend. The proposed method exploits the learning ability of a GP and updates its prediction using a feedback mechanism. The methodology is tested on actual turbine blade degradation data for a variety of topologies (i.e., kernels). The GP estimations are compared to those obtained with a nonprobabilistic, kernel-based machine learning algorithm, the support vector regression (SVR). The comparison outcome clearly demonstrates that GP prediction accuracy outperforms SVR in the majority of the cases while providing a predictive distribution instead of point estimates as SVR does.