ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Zoltán Perkó, Jan Leen Kloosterman, Sándor Fehér
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 83-97
Technical Paper | Fuel Cycle and Management | dx.doi.org/10.13182/NT12-A13329
Articles are hosted by Taylor and Francis Online.
Within the Generation IV initiative, the gas-cooled fast reactor (GFR) is one of the reactors dedicated to minor actinide (MA) transmutation. This paper summarizes the research performed with the GFR600 reference design in order to assess its MA burning capabilities. For the study, modules of the SCALE program system were used.Single-cycle parametric studies were performed with cores having different MA content and spatial distribution. It was shown that the addition of MAs to the fuel greatly reduced the reactivity loss during burnup. Moreover, the higher the MA content of the core, the higher the fraction of it that was fissioned; however, the more the delayed neutron fraction and the fuel temperature coefficient degraded. Significant reduction can be achieved in the amounts of neptunium and americium, while curium isotopes accumulate.The study of multiple consecutive cycles showed that by adding only depleted uranium (DU) to the reprocessed actinides in fuel fabrication (pure DU feed strategy), up to 70% of the initially loaded MAs can be fissioned in the first five cycles. Moreover, the reactor can be made critical during that time if the initial MA content is higher than 3%. By feeding MAs as well (constant MA content strategy), the reactivity has a steady increase from cycle to cycle, predominantly due to 238Pu breeding from 237Np.The effects of the isotopic composition of the plutonium and MAs were also examined by performing calculations with data specific to the spent fuel of traditional western pressure water reactors and Russian type VVER440 reactors. Despite the considerably different MA vectors, no significant deviation was found in their overall transmutation. However, the Pu composition had a strong effect on the reactivity and the delayed neutron fraction in the first cycles.Finally, cores having nonuniform MA content were investigated. It was found that though the MA destruction efficiency was significantly higher in the middle of the core than at the edge, moving some of the MAs from the outer regions to the center resulted in only minor improvement in their destruction. However, the spectral changes caused by the rearrangement increased the k-effective, which allowed higher burnups and increased MA destruction. Unfortunately, some of the safety parameters of the reactor degraded.