ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Congress passes new nuclear funding
On January 15, in an 82–14 vote, the U.S. Senate passed an Energy and Water Development appropriations bill to fund the U.S. Department of Energy for fiscal year 2026 as part of a broader package that also funded the U.S. Army Corps of Engineers and the U.S. Bureau of Reclamation.
L. Bosland, G. Weber, W. Klein-Hessling, N. Girault, B. Clement
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 36-62
Technical Paper | Reactor Safety | doi.org/10.13182/NT12-A13326
Articles are hosted by Taylor and Francis Online.
The Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France, and the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Germany, have been involved in the analyses and modeling of PHEBUS tests and particularly in iodine chemistry behavior in the containment. To analyze the accuracy of the chemistry models developed and reproduce volatile iodine formation, iodine behavior in PHEBUS FPT-1 containment was modeled by both IRSN and GRS with two different codes: ASTEC and COSOSYS. The ways of modeling (using the ASTEC/IODE and COCOSYS/AIM respective modules) and the nodalization of both approaches are presented and compared, as well as the assumptions made to perform the calculations. The results of the comprehensive analyses are compared with the experimental results, and interpretation of the iodine behavior in the PHEBUS FPT-1 containment is given. Then, a common point of view is concluded that highlights the lack of knowledge for some phenomena of significant impact on the iodine behavior in the containment during a severe accident. Organic iodide and iodine oxide formation models in particular are pointed out for the gaseous phase. The need for improving iodine behavior models including their coupling to thermal hydraulics and aerosol physics is also explained.