ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
John Loberg, Michael ÖSterlund, Klaes-Håkan Bejmer, Jan Blomgren, Jesper Kierkegaard
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 1-7
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A13323
Articles are hosted by Taylor and Francis Online.
Boiling water reactor (BWR) bottom reflector calculations in lattice codes such as CASMO are presently used only to produce accurate boundary conditions for core interfaces in nodal diffusion codes. Homogenized cross-section constants and discontinuity factors are calculated in one dimension (1-D) without the explicit presence of the control rod absorber. If the spatial flux in a BWR bottom reflector is required, for example, for depletion calculations of withdrawn control rods, the homogenization of the reflector must be based on a representation of the three-dimensional (3-D) geometry and material composition that is as true as possible.This paper investigates differences in cross-section and discontinuity factors from 1-D calculations in CASMO with 3-D Monte Carlo calculations of a realistic bottom reflector model in MCNP5. The cross-section and discontinuity factors from CASMO and MCNP5 are furthermore implemented in the nodal diffusion code SIMULATE5 to investigate the effect on the neutron fluxes in the bottom reflector.The results show that for the case investigated, the 1-D homogenization in CASMO5 produces a 26% overestimation of the homogenized thermal absorption cross section in the reflector and a 62% underestimation of the homogenized fast absorption cross section. These cross-section differences have essentially no impact on the neutron flux in the core but cause a 4.5% and 12.3% underestimation of the thermal and fast neutron flux, respectively, in the reflector region.