ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Hashem M. Hashemian, Wendell C. Bean
Nuclear Technology | Volume 176 | Number 3 | December 2011 | Pages 414-429
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A13317
Articles are hosted by Taylor and Francis Online.
Cable condition monitoring involves a variety of testing or monitoring methods, none without limitations. Mechanical and chemical tests are only local in their effectiveness; they can miss problems in the untested cable. Electrical-cable-condition-monitoring tests - including insulation resistance tests, impedance measurements (such as the LCR test), and reflectometry or "cable radar" methods - make it possible to test entire cable circuits while they remain in operation. Impedance measurements enable the evaluation of cable condition factors such as dielectric absorption ratio, polarization index, quality factor, and dissipation factor. Several new electrical measurement methods, including time or frequency domain reflectometry, and a wireless microsensor technology called AgeAlert™, are showing promise as techniques for in situ monitoring of the nuclear power plant cable condition. The integration of all these methods and their combination with end-device testing methods represent a new application of cable condition monitoring that promises to provide the correlation between aging test results and the aging condition of in situ cables that individual methods by themselves do not provide.