ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Z. D. Whetstone, K. J. Kearfott
Nuclear Technology | Volume 176 | Number 3 | December 2011 | Pages 395-413
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT10-118
Articles are hosted by Taylor and Francis Online.
This research was conducted to determine the optimal way to shield a compact, isotropic neutron source into a beam for active interrogation neutron systems. To define the restricted emission angle and to protect nearby personnel when stand-off distances are limited, shielding materials were added around the source. Because of limited space in many locations where active neutron interrogation is employed, a compact yet effective design was desired. Using the Monte Carlo N-Particle Transport Code, several shielding geometries were modeled. Materials investigated were polyethylene, polyethylene enriched with 10B, water, bismuth, steel, nickel, INCONEL® alloy 600, tungsten, lead, and depleted uranium. Various simulations were run testing the individual materials and combinations of them. It was found that at a stand-off distance of 1.5 m from the source, the most effective shielding configuration is a combination of several layers of polyethylene and steel. Without any shielding, the dose is 3.71 × 10-15 Sv/source particle. With a shielding consisting of multiple layers of steel totaling 30 cm thickness interspersed with several layers of polyethylene totaling 20 cm thickness, the dose drops to 3.68 × 10-17 Sv/emitted neutron at radians opposite the shield opening. The layered shielding approach is more effective at reducing dose equivalent and neutron fluence than shields made out of single continuous layers of the same material and thicknesses. Adding boron to the polyethylene and substituting tungsten for steel would make the shielding more effective but would add mass and cost.