ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
Jin-Seok Hwang, Jong-Won Kim, Heon-Uk Nam, Goon-Cherl Park
Nuclear Technology | Volume 176 | Number 2 | November 2011 | Pages 260-273
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT11-A13300
Articles are hosted by Taylor and Francis Online.
A major safety factor in marine reactor design, critical heat flux (CHF), is assessed using the MARS system analysis code under heaving conditions. As gravity acceleration changes, the CHF is affected by the thermal hydraulics in the reactor through inlet flow fluctuations. Performing the analysis with the MARS code, which uses the properties of water for the working fluid, requires applying the CHF experimental data using fluid-to-fluid (FTF) scaling because most CHF experiments are conducted with Freon (R-113) as the working fluid. The FTF scaling methods suggested by Ahmad, Katto, and Coffield are adopted and compared. Otsuji et al.'s experiment, which was conducted using mass flow rate oscillation, is applied to evaluate the capability of MARS for heaving conditions. According to the calculations the FTF methods of Ahmad, Katto, and Coffield show good agreement (within an error of ±10.73% for Otsuji et al.'s experiment) for inlet flow rate oscillation corresponding to gravity acceleration in a vertical direction. In addition, variation of the acceleration affects the flow conditions, such as the mass flow rate and the void fraction. Thus, MARS has a noteworthy ability to predict the CHF for heaving conditions by simulating inlet flow rate oscillation.