ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jin-Seok Hwang, Jong-Won Kim, Heon-Uk Nam, Goon-Cherl Park
Nuclear Technology | Volume 176 | Number 2 | November 2011 | Pages 260-273
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT11-A13300
Articles are hosted by Taylor and Francis Online.
A major safety factor in marine reactor design, critical heat flux (CHF), is assessed using the MARS system analysis code under heaving conditions. As gravity acceleration changes, the CHF is affected by the thermal hydraulics in the reactor through inlet flow fluctuations. Performing the analysis with the MARS code, which uses the properties of water for the working fluid, requires applying the CHF experimental data using fluid-to-fluid (FTF) scaling because most CHF experiments are conducted with Freon (R-113) as the working fluid. The FTF scaling methods suggested by Ahmad, Katto, and Coffield are adopted and compared. Otsuji et al.'s experiment, which was conducted using mass flow rate oscillation, is applied to evaluate the capability of MARS for heaving conditions. According to the calculations the FTF methods of Ahmad, Katto, and Coffield show good agreement (within an error of ±10.73% for Otsuji et al.'s experiment) for inlet flow rate oscillation corresponding to gravity acceleration in a vertical direction. In addition, variation of the acceleration affects the flow conditions, such as the mass flow rate and the void fraction. Thus, MARS has a noteworthy ability to predict the CHF for heaving conditions by simulating inlet flow rate oscillation.