ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Tae-Hoon Lee, Young Soo Kim, Hee-Sung Shin, Ho-Dong Kim
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 147-154
Radiation Measurements and General Instrumentation | dx.doi.org/10.13182/NT11-A12549
Articles are hosted by Taylor and Francis Online.
A passive neutron coincidence counter for nuclear material measurement of the advanced spent fuel conditioning process (ACP) has been developed by the Korea Atomic Energy Research Institute (KAERI) since 2003 and was deployed in a hot cell of the ACP Facility (ACPF) in 2005. The most dominant neutron source among the spontaneous fission nuclides contained in spent fuel is 244Cm. To obtain the neutron counting rates of the singles, doubles, and triples coincidences of the neutron counter with an increment of the 244Cm mass, a hot test of the neutron counter was performed in 2007 with several spent fuel rod-cuts in the ACPF hot cell. The source term of the spent fuel rod-cuts was obtained using the ORIGEN-ARP burnup simulation code, and a set of preliminary calibration curves of the neutron counter for 244Cm was generated. The calibration curves were also obtained from the results of an MCNPX code simulation, but there was a wide difference of [approximately]30% in the slope of the double-rate calibration curve between the measurements and the MCNPX results. Chemical analysis results of the spent fuel samples were obtained in September 2008, and it was found that the difference between the measurements and the MCNPX results is due to an error in the declared burnup since the chemical analysis burnups of the samples differ from the declared ones by [approximately]10%. The expected burnup of each rod-cut was also obtained from the results of self-multiplication correction for the 244Cm mass of the rod-cuts, and the difference between the expected burnup results and the chemical analysis results is <2%. This study shows high performance of the neutron coincidence counter for 244Cm measurements of spent fuel and also shows that the burnup of spent fuel samples can be obtained through a series of ORIGEN-ARP code simulations if it is possible to acquire the measurement data of neutron counting rates for 244Cm of the samples.