ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tae-Hoon Lee, Young Soo Kim, Hee-Sung Shin, Ho-Dong Kim
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 147-154
Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-A12549
Articles are hosted by Taylor and Francis Online.
A passive neutron coincidence counter for nuclear material measurement of the advanced spent fuel conditioning process (ACP) has been developed by the Korea Atomic Energy Research Institute (KAERI) since 2003 and was deployed in a hot cell of the ACP Facility (ACPF) in 2005. The most dominant neutron source among the spontaneous fission nuclides contained in spent fuel is 244Cm. To obtain the neutron counting rates of the singles, doubles, and triples coincidences of the neutron counter with an increment of the 244Cm mass, a hot test of the neutron counter was performed in 2007 with several spent fuel rod-cuts in the ACPF hot cell. The source term of the spent fuel rod-cuts was obtained using the ORIGEN-ARP burnup simulation code, and a set of preliminary calibration curves of the neutron counter for 244Cm was generated. The calibration curves were also obtained from the results of an MCNPX code simulation, but there was a wide difference of [approximately]30% in the slope of the double-rate calibration curve between the measurements and the MCNPX results. Chemical analysis results of the spent fuel samples were obtained in September 2008, and it was found that the difference between the measurements and the MCNPX results is due to an error in the declared burnup since the chemical analysis burnups of the samples differ from the declared ones by [approximately]10%. The expected burnup of each rod-cut was also obtained from the results of self-multiplication correction for the 244Cm mass of the rod-cuts, and the difference between the expected burnup results and the chemical analysis results is <2%. This study shows high performance of the neutron coincidence counter for 244Cm measurements of spent fuel and also shows that the burnup of spent fuel samples can be obtained through a series of ORIGEN-ARP code simulations if it is possible to acquire the measurement data of neutron counting rates for 244Cm of the samples.